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INJECTION OF A N  INVISCID SEPARATED JET AT AN OBLIQUE 

ANGLE TO A MOVING STREAM 

by M a r v i n  E. Goldstein and W i l l i s  B r a u n  

Lewis Research Center 

SUMMARY 

. An analytical solution has been obtained to the problem of a two-dimensional incom- 
pressible jet injected into a moving s t ream from an orifice set at an oblique angle to the 
stream. It is assumed that the jet separates from the downstream edge of the orifice. 
The solution is valid when the normalized difference between the total pressure in the 
jet and the total pressure in the main s t ream is not too large. Typical flow patterns a r e  
shown to  illustrate the effects of varying both the jet offset ratio and the total pressure 
within the jet. The analysis shows that for orifices tilted into the main s t ream small  in- 
creases  in the total pressure in the jet result  in large increases in the jet penetration 
and thickness. 

INTRODUCTION 

The flow field which resul ts  from the oblique injection of a jet into a moving s t ream 
is of considerable interest in a number of fluid mechanical devices. Among these a r e  
ground-effect machines, jet flaps, wing fans on VTOL aircraft  and fuel injection systems 
in combustion chambers. 

The fluid mechanics of jet penetration into moving s t reams is by no means fully 
understood. Some insight into this phenomenon can be gained by considering the injec- 
tion of two-dimensional inviscid incompressible jets into moving s t reams since such 
flows are simple enough to be amendable to mathematical analysis. Of course, viscous 
effects can be quite significant in real fluid flows. 
effects into account the usual procedure is to first perform an inviscid analysis and then, 
provided viscous effects do not modify the flow significantly in the wake region, to mod- 
ify the flow by superimposing viscous boundary layers. In any event, it is hoped that the 
inviscid analysis will reveal some of the important features of the flow field and thereby 

However, in order to take viscous 



lead to an increased understanding of the phenomena involved. 
Relatively few analyses of inviscid flows of this type have been performed, This is 

due at least partially to the fact that analysis of such flows involves the solution of a 
nonlinear problem in which the shapes of the boundaries are unknown. However, in the 
very special case where the total pressure in the jet is equal to the total pressure in the 
main stream, the classical theory of inviscid jets can be used to obtain solutions. Flows 
in which the total pressure in the jet equals the total pressure in the main s t ream a r e  
discussed by Ehrich in reference 1. Ehrich considers a large number of possible flow 
configurations for jets issuing from both slots and orifices. It has been found, however, 
that there is a serious e r r o r  in his results for jets issuing from orifices. (Since these 
results emerge as a special case of the analysis performed herein the corrected solu- 
tions will be given.) The e r ro r  was caused by taking the wrong sign for the square root 
in the expression for the contraction ratio. 

There is another limiting case, called the ?'strong jet approximation, ? '  in which the 
analysis can be considerably simplified. This is the case where the total pressure in 
the jet is very much larger than that in the main stream. An analysis of this type of jet 
was  first carried out by G. I. Taylor (ref. 2). Taylor obtained an analytical solution by 
introducing an additional approximation. This latter approximation was removed by 
Ackerberg and Pal (ref. 3), who developed a variational principle for the problem and 
thereby obtained a numerical solution. Although making the strong jet approximation 
considerably simplifies the analysis, the resulting problem is still nonlinear' and in- 
volves an unknown boundary s o  that an exact analytical solution does not seem feasible. 
In any event, as was pointed out by Taylor (ref. 2), the viscous spreading of real jets 
which have a total pressure much larger than that in the main s t ream is so large that the 
inviscid solutions show no relation to actual experiments. 

The general problem of an inviscid jet issuing into a flowing s t ream from a two- 
dimensional vaned slot was reformulated by Ting, Libby, and Ruger (ref. 4) in terms of 
two simultaneous nonlinear singular integral equations. Because of the extreme diffi- 
culty involved in solving such equations, the authors considered two limiting cases of the 
equations. The first corresponded to the strong jet approximation and the second to the 
case where the total pressure in the main s t ream differs by only a small amount from 
the total pressure in the jet. Because of the nature of the boundary conditions associ- 
ated with the vaned slot, the authors could not linearize the problem even in the case of 
small  total pressure difference. Hence, their formulation of this problem is still in 
t e rms  of a very difficult nonlinear singular integral equation. The authors give a nu- 
merical procedure for  obtaining a solution to this equation; but, as pointed out by Ting 
and Ruger (ref. 5), no attempts at carrying out the solution have been successful. It 
was also shown in reference 5 that no ordinary perturbation procedure could be used to 
obtain the solution to the problem of a jet issuing f rom a vaned slot. However, it will 
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be shown subsequently that a systematic perturbation procedure can be used to linearize 
the problem of a jet issuing f rom an orifice into a moving s t ream in the case where the 
normalized total pressure difference is small. 

In this report an explicit analytic (closed form) solution is obtained for the flow field 
resulting from a jet issuing f rom an orifice into a moving stream. 
an oblique angle to the flow and it is assumed that the jet separates from the downstream 
edge of the orifice to fo rm a stagnent wake. The flow configuration is shown in figure 1. 
The flow will be assumed to be two-dimensional, inviscid, and incompressible. In addi- 
tion, it will be required that in a certain sense (to be specified more precisely below) 
the normalized difference between the total pressure in the jet and the total p ressure  in 
the main s t ream be small. 
ing from the upstream edge of the orifice. 
ous across  this s t ream line. 

the difference in total p ressure  between the jet and the main stream. The zeroth-order 
solution corresponds to  equal total pressures  and can be written down immediately by a 
simple application of classical techniques, The solution to the zeroth-order problem in 
fact corresponds to one of the solutions obtained in reference 1. However, it was found 
that by using a somewhat different procedure than that used in reference 1 a simpler and 
more convenient form of this solution could be obtained. 

Since the boundary shapes for the first-order (different total pressure) problem are 
unknown, a technique s imilar  to that employed in thin airfoil theory is used to transform 
the first-order boundary conditions to the zeroth-order boundary. This transformed 
problem still involves a combination of boundary and jump conditions which cannot be 
handled by ordinary techniques. Therefore, a new procedure w a s  developed to trans- 
form this  problem into a standard problem for a sectionally analytic function. 
tionally analytic function is one which is holomorphic in each of two adjOining regions 
and has a specified jump in value across  the boundary of these regions. ) The procedure 
consists of introducing a new dependent variable in such a way that the new variable has 
to satisfy only jump and symmetry conditions instead of the combination of jump condi- 
tions and boundary conditions that the original variable satisfies. In order to introduce 
this new variable, several  mappings between certain complex planes a r e  introduced. 
The solution is then obtained by using the theory of sectionally analytic functions. 

It should be emphasized that the techniques developed herein are quite general and 
can be applied to a wide variety of jet injection problems. Since it is impossible to tell 
from the inviscid analysis whether separation will occur at the downstream edge of the 
orifice, the case with no separation will be considered in a future report. It is shown in 
appendix A that, by a simple rescaling, the resul ts  obtained herein can be applied to the 
case where the density of the fluid in the jet is different f rom that in the main stream. 

The orifice is set at 

The upstream boundary of the jet is the s t ream line emanat- 
The velocity, in general, will not be continu- 

The problem is solved by expanding the solutions in a small  parameter related to  

(A sec- 
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It is perhaps worth pointing out why an ordinary perturbation procedure works for 
jet injection problems from orifices but will not work for  jet injection problems from 
slots and vaned slots. 
solution the flow fields associated with slots and vaned s lots  have stagnation points at the 
up-stream edge of the slot, whereas the flow fields associated with orifices do not. The 
nature of this stagnation point changes discontinuously as the total pressure in the jet is 
changed from the free-s t ream value. This discontinuous change results in a singularity 
at the stagnation point in the first-order solution when an ordinary expansion procedure 
is used. This difficulty can be overcome by using the method of matched asymptotic ex- 
pansions. The inner expansion can, in fact, be obtained by rescaling the results given 
in reference 5, and the outer expansion can be obtained by the procedure given in this 
report. 

The reason is a consequence of the fact that in the mathematical 

ANALY S1 S 

Formulation and Boundary Conditions 

It will be assumed that the flow is inviscid, incompressible, and irrotational. The 
The analysis is limited to the case in which jet configuration is illustrated in figure 1. 

the difference between the total pressure in the jet P 
s t ream P, is not too large; or more specifically, to  the case in which 

and the total pressure in the main 
j 

Jet source 

Figure 1. - Schematic conf igurat ion of jet penetrating i n t o  flowing stream. 
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re 

P .  - Pm 
g =  J 

1 2  
2 
- PV, 

is the density of the fluid, and V, is the velocity of the main s t ream at infinity. 

alysis. The X and Y components of the velocity, U and V respectively, will be 
Let 1 be a convenient reference length which will be specified in the course of the 

made dimensionless by V,, and the s t ream function @ and the velocity potential 9 
will be made dimensionless by V,1. Thus, the dimensionless quantities u, v, *, and 
cp are defined by u z U/V,, v I V/V,, * = Q/V,Z, and cp = @/V,1. The dimension- 
less complex conjugate velocity < and the dimensionless complex potential W are de- 
fined, as usual, by 

' p = u - i v  

and 

With all lengths made dimensionless by 1 (i. e.,  x = X / I ,  y = Y / 1 ,  a = A/1, b = B / 1 ,  
and h = H/L), the flow configuration is shown in the physical plane (with the complex 
variable z defined by z = x + iy) in figure 2. 

The s t ream of fluid issuing from the orifice formed by the two parallel walls KD 
and EK meets the main s t ream at the point D and forms a, common stream line, which 
is denoted by S in figure 2. At the point E the jet separates from the wall &? and a 

- 
n 

D 

Figure 2. - Flow configuration i n  physical plane (z-plane). 
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s t ream line (denoted by F in fig. 2) marks the boundary between the jet and the down- 
s t ream wake region, which is assumed to be composed of stagnent fluid. The shapes of 
the curves S and F are a pr ior i  unknown and must be determined from the analysis. 
Points on the curves S and F will be denoted, respectively, by z = x + iys and 
z F  + xF + iyF. 

anywhere within the flow field, it is necessary (as will be shown subsequently) to allow 
the velocity to be discontinuous across  S. For this reason the s t ream line S will be 
called the sl ip line. The region within the jet and orifice is denoted by D', and the r e -  
maining region of the flow (i. e . ,  the main stream) by D-. Since the velocity (and as a 
consequence, the velocity potential) is discontinuous across  S, it is convenient to use 
the superscripts + and - to distinguish these regions. Thus, 

s s  

In order to satisfy the requirement that there  be no discontinuities in static pressure  

and 

w+(z); 2 E D +  i w-(z); z E D -  
W(z) = 

Then 5' and W +  a r e  holomorphic in the interior of D+, and 5 -  and W -  are holo- 
morphic in the interior of D-. 

Bernoulli's equation can be written for the flow inside the jet as 
The following argument will show that the velocity must be discontinuous across  S. 

and for  the flow external to the jet, Bernoulli's equation is 
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Now, in view of the fact that S is a common stream line to the external and internal 
flow, the points z in both these equations can be chosen to be the same point zs on the 
curve S. Since the static pressure  must not be discontinuous across  S, it follows from 
equations (2) and (3) that 

at every point zs of S. 
On the other hand, since there is no flow in the wake, it is clear that the static pres- 

su re  along the free-s t ream line F is constant and equal to the pressure in the wake. 
Because the velocity in the jet must become uniform across  the jet far downstream (i. e . ,  
at the point C in fig. 2), it follows that there cannot be any pressure difference across  
the jet far downstream. It can be concluded from this that the pressure in the wake must 
equal p,, the static pressure of the main s t ream at infinity. 
that at any point z F  of F 

Hence, equation (2) shows 

Since S is a common s t ream line to the internal and external flows it is clear that 
9#W+(zS) and 9w&W-(zs) a r e  both constants. Moreover, the arbitrariness in the defini- 
tion of W can be partly removed by choosing these constants to be zero (ref. 6). Hence, 

The remaining arbitrariness in W can be removed by choosing 

w+(O)  = w-(o) = 0 (7) 

The fact that F is a s t ream line implies that there exists a rea l  constant QF such that 

The conditions imposed on the velocity at infinity are (in view of the manner of nondimen- 
sionalization; also see  fig. 2) 
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c+(z) - o for z - K (9) 

and 

(-(z) - 1 for z - G (10) 

The remaining boundary condition is that the normal component of the velocity vanish on 
the solid boundaries. These conditions a r e  sufficient to completely determine the solu- 
tion. They are summarized below for convenient reference. 

9 t w + ( z )  = 9mw-(z)  = 0 

I (+(Z) 12 = 1 + E 

94tzW+(Z) = Q . I z E F  I 
9mg+(Z) = 0 ;  z E G  I 

I ?m<+(z)  = 0; z €62 

y*c-(z) = 0 ;  z E 65 

Asymptotic Expansions 

For small  values of E ,  the functions <* and W* can be expanded in an asymptotic 
power ser ies  in E .  In view of the fact that the shape of the sl ip line and of the free- 
s t ream line depend on E,  these expansions imply that the coordinates of S and F, z 

and z F ,  respectively, and the asymptotic jet width h must also be expanded in powers 
of E .  Hence, 

S 
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I 5' = Co + €5;  + .  . . 
W f = W O + E W ; + .  . . 

ZF =zF + E Z 1  F + ,  . . 
s s  S z = z o  + E Z 1  + .  . 0 

0 

i h = h o  +Ehl + .  . . 
* F = * ; + E * l  F + .  . . 

It should be pointed out that the expansions for zs and zF do - not imply that the 
complex variable z is being expanded. 
boundary of the jet. 
remaining expansions a r e  determined in terms of it. 

These expansions a r e  only for the shape of the 
In fact, only one of the expansions (12) is independent, and the 

Thus, for example, since 

it follows that 

f.. 0 + € -  
"1 - dwO 5 0 + E S 1 + .  . . -- f 

dz d z  

Hence, equating like powers of E shows 

dwO 50 =- 

5;=-;; . . 0 . .  

. . . . .  

. . . . .  
9 
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Therefore, once the coefficients of the various powers of E are knuwn in the expansion 
for Sf, the coefficients of the various powers of E in the expansion for W' are deter- 
mined by equations (13). 

first two expansions is that (as will be shown subsequently) the zeroth-order solutions 
are not discontinuous across  the curve S and so there is a single function Eo which is 
homomorphic in the entire flow field (of course, the same is true for Wo). 

The reason for omitting the superscript + or - in the zeroth-order te rms  of the 

- 

The reference length 2 will  now be chosen in such a way that 

ho = 1 

Thus, 2 is the zeroth-order asymptotic thickness of the jet. 
ally by putting 

This is denoted symbolic- 

0 2 = H  

The last expansion (eq. (12)) is then 

h = l + E h p + .  o .  

Zeroth -Order Solution 

When the expansions (12) a r e  substituted into the bouPd,H y conditions (7) 
and (9) to (11)) and only the zeroth-order terms are retained., the following boundary 
conditions for the zeroth-order solution a r e  obtained: First, the first boundary condi- 
tion (11) shows, as has already been anticipated, that the zeroth-order solution 
must be continuous across  the slip line and, hence, that it is characterized by functions 
which a r e  holornorphic everywhere within the flow field. 
that 

The remaining conditions show 

I WO(O) = 0 

9+%w,(z;) = 0 
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for z - K  

co(z) - 1 for z - G J 

The conditions (16) merely serve to show that, because of the manner in which the 
arbitrary constants have been adjusted in the complex potential, the s t ream line ema- 
nating from the point D is to be taken as the zero s t ream line. 

Now the change in the s t r eam function across the jet must be equal to the volume 
flow rate through the jet. 
the jet, in view of the second condition (16) and the second condition (17), it 
follows that 

Hence, if  Qo denotes the zeroth-order volume flow through 

The first boundary condition (eq. 17)) shows that far downstream in the jet (i. e., at the 
point C) the zeroth-order velocity goes to 1. In view of the normalization (15) the as- 
ymptotic thickness of this portion of the jet must also be 1. It follows from these re- 
marks that Qo = 1. Hence, 

Now, the boundary value problem posed by the boundary conditions (17) is a simple 
free-stream-line problem which can be readily solved by the Helmholtz-Kirchhoff tech- 
nique. In fact, the solution to this problem has already been carried out by Ehrich 
(ref. 1). His solution, however, is somewhat inconvenient for our purposes. The pro- 
cedure used herein for obtaining the solution is (ref. 6) to draw the region of flow in the 
hodograph plane and in the complex potential plane, and then to find the appropriate map- 
ping of these two planes into some convenient intermediate plane (say the T-plane). The 
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, , , . .. __ . . ._ .. __ 

G 

I -1 

E 
I 

Figure 3. - Zeroth-order complex potential plane (Wo-plane). 

C 

Figure 4. - Zeroth-order hodograph (,i&-plane). 

shapes of these regions can readily be deduced from the boundary conditions (17), and 
they are shown in figures 3 and 4 (we have put Wo = q0 + it,bo in fig. 3). The corre-  
sponding points in the various planes a re  designated by the same letters. The zeroth- 
order "slip line" is shown dashed in these figures since i t  does not correspond to a line 
of discontinuity and can therefore be ignored as far as obtaining the zeroth-order solu- 
tion is concerned. The intermediate T-plane is chosen in such a way that the region of 
flow maps into the upper half-plane in the manner indicated in figure 5. W e  shall denote 
the real and imaginary par ts  of the variable T by 6 and q, respectively. The region 
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Asymptote-, 
_--- 

C 

G 
E - K 

+ - - A 4  

-- - * 
i, E -1 

Figure 5. - Intermediate plane (T-plane). 

of the T-plane into which the zeroth-order flow field interior to the jet and orifice maps 
is denoted by 9:, and the region of the T-plane into which the zeroth-order main 
s t ream maps is denoted by 9i. 
being called for convenience the zeroth-order slip line even though no slip occurs in the 
zeroth-order solution) is denoted by Yo. 

A simple application of the Schwartz-Christoffel transformation (ref. 7) shows that 
the mappings which properly transform the Wo-plane and the cO-plane into the upper 
half T-plane in the manner indicated in the figures are respectively defined by 

The dividing line between these two regions (which is 

d w O - l  - T + l  n r O  
dT 7~ T 

and 

Or, performing the indicated integrations, 
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7 ' 0  (23) - -  1 - T - ~ A + ~ ~ & I / K T  
50 T 

In order to find the equation for Yo, the zeroth-order sl ip line in  the T-plane, notice 
figures 3 and 5 show that gmWO(T) = 0, whenever T E .Yo. Now equation (21) shows, 
since T = 5 + iq, 

Hence, setting the imaginary par t  of this expression equal to zero  we find that 

This equation has two solutions. The first 

q = O  and 5 < - 1  

corresponds to the negative real axis in the Wo-plane and is of no interest  to us. The 
other solution is 

This solution corresponds to 1 

tan(7J - q ) = T  o < q < 7 r  
5 

e posiLve real  axis in the V. O-plane anc 
mines the equation of Yo. Thus, 

17 - 1 7  - - -  O < q ' \ r r  , for  T G .Yo 5 =  
tan(7r - 17) tan q 

Hence, the parametric equation for .Yo is 

0 < 7 < 7 r  

therefore deter- 
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It will be necessary in what follows to have an expression for VT - A €or T E Yo in 
te rms  of the parametric variable q. In order  to obtain this expression, notice that 

d T - A = e (  1/2)ln(T-A) 

Hence, using equation (24) in this expression shows that for  T E .Yo 

where 

It follows from the first equation (13) that the points in the physical plane (fig. 2) 
a r e  related to the points in the T-plane by 

Substituting equations (19) and (23) into this formula shows that 

where 

15 
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and we have used the fact, indicated in figure 2, that the origin of the coordinate system 
in the physical plane is to be at the point D. On carrying out the indicated integration in 
equations (29) and (30) we find that 

+ 4 & \ 1 ; = + 2 A l n ( d = -  & ) 2 + 4 A i n  (31) 

and that 

Hence, substituting these relations into equation (28) yields 

2 
A + 1) + (2 A - l ) l n ( d G  - fi) + 6 6  d K  + 2im(2 A - 1)l (32) 

m 

By definition (see figs. 2 and 5), 

z(A) = a + ib  

Hence, equation (32) shows, after equating real and imaginary parts, 

(33) 

+ 1) + (2 A - 1)ln 
m 

b = 2(2 A - 1) J 
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There is an e r r o r  in  Ehrich's expression for a which corresponds to having the wrong 
coefficient in the dl + A t e rm in equation (34). By using these latter two equations, 
equation (32) can be written as 

+ 2 i & ( 2 - $ ) y = - b l n  

We notice for future reference that equation (31) shows 

Il(A) = A + 1 + 2 A In + 4 & 4 = ' + 4 r r i A  

Formulation of First-Order Problem in Physical Plane 

The mapping T - z defined by equation (35) maps the upper half T-plane approxi- 
mately into the region of flow in the physical plane. 
cross-hatched region of the physical plane shown in figure 6. 
line segment EC are mapped into the dashed boundaries So and Fo, respectively, of 
this region. 
boundaries S and F are indicated by the solid lines (curved) in the figure. However, 
when I E I is sufficiently small, S and F do not differ very much from the zeroth-order 
boundaries of the jet So and Fo, respectively. 

Now the f i r s t  group of the boundary conditions (11) a r e  specified on the curves S 
and F in the physical plane, whose shapes a r e  not known at this stage of the solution. 
However, the curves So and Fo, whose shapes are known, differ f rom S and F, re-  
spectively, by quantities which a r e  of order  E .  Since insofar as the first-order solu- 
tion is concerned, the boundary conditions only have to be satisfied up to and including 

The domain 9; is mapped into the 
The curve Yo and the - 

This region, of course, differs f rom the true interior of the jet, whose 

Figure 6. - Comparison of zeroth-order and t r u e  boundaries in physical plane. 
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terms of order E, we shall attempt to transfer the boundary conditions correct  to terms 
of order E from S and F to So and Fo, respectively. To this end recall that the 
solutions have been divided into two parts (indicated by the superscripts + and -), one 
of which is holomorphic in D+ and the other holomorphic in D-. We shall assume 
where necessary (as is done in thin-airfoil theory) that each of these portions of the' 
solution can be analytically continued across S and F to So and Fo, respectively. 
Thus, the values of c* and W* at a point zs of S can be expressed in terms of their 
values at the neighboring point z: of So by performing a Taylor ser ies  expansion of 
these quantities about z:. Of course, similar remarks apply to F. Hence, 

p ( Z S )  = 5 * s  (zo)+ (e) ,("s - z;) + ' * * 

dz 
z=zO 

W*(ZS) = w*(z;) + s'(z;)(zs - z;) + . . . 

c+(zF)= 5 + F  (z*) + (s) .(" - zgF)+. . . 
z=zo 

W+(ZF) = W+(ZoF) + r+(z;)(ZF - z;) + . . . 

Substituting the asymptotic expansions (12) into these Taylor ser ies  and retaining the 
terms of O ( E )  yields 

r 1 

W*(ZS) = wo(z;) -I- E p;(z;) + so(z;)z;] + o(2) 

r 1 

(39) 
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W+(ZF) = wo(zo") + E E;(.;) + co(zoF)zI;'] + .(E2) 

Hence, we have succeeded in obtaining expressions for the values of the dependent vari- 
ables W' and e* a t  the points of the unknown boundaries S and F in terms of their 
values on known boundaries So and F 
pressions a r e  substituted into the boundary conditions (11) and terms of O(E ) are ne- 
glected, expressions will  be obtained which give the correct  boundary conditions for the 
first-order solutions on the known boundaries So and Fo. It is clear from the form of 
these boundary conditions that it will first be necessary to obtain expressions for  

it follows immediately from equation (37) that 

2 with an e r ro r  of order E . When these ex- 
2 0 

1 b*(zs) I and I c*(zF) I correct  to terms of O(E 2 ) before this can be carried out. But 

r 

1 
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Hence, 

In a completely analogous way, it follows that 

Substituting the expansions (38) and (40) to (42) and the last of expansions (12) into the 
first group of boundary conditions ( l l ) ,  equating the coefficients of E to the first power, 
and using the zeroth-order boundary conditions (17) to eliminate I co(z:)l yield 

Re 

Pm [w;(z;) + co(z;)z;] = 0 

(44) 
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Thus, equations (43) to  (47) are the boundary conditions for the first-order solutions on 
the boundaries S and F "transferred" to the zeroth-order boundaries So and Fo. 
Hence, the first-order boundary value problem has been transformed from one in which 
the shapes of the boundaries are unknown to one in which they are known. Notice, how- 
ever, that these boundary conditions involve the variables W1", <:, zl, and zl. But <: is completely determined in t e rms  of W r  by the second equation (13). Tn view of 
this the conditions (43), (45), and (46) may be thought of as two boundary conditions con- 
necting the variable i$ with the variable <; across  So (or equivalently the variable 

with the variable W;) plus an equation which determines z s  once <r are known. 
Thus, subtracting equation (46) from (45) yields 

S F 

Then, in view of the second equation (13), equations (43) and (48) a r e  the boundary con- 
ditions on So which connect the solution <; in D+ with the solution <; in D-, and 
equation (45) serves  to  determine will be deter- 
mined in a slightly different fashion.) Similarly, the variable 2: can be eliminated 
between the conditions (44) and (47) to yield a single boundary condition for <; (or $) 
on Fo. 

once <; is known. (Actually, 

To this end notice it follows from equation (13) that 

Hence, in particular 

F 

But 
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where 

Re 

This shows that i(d In co/dWo) 

is the curvature of the s t ream line So. ) Hence, 

is real. (In fact, it shows that i(d In co/dWo) 
z=zo z=zO 

Using equation (47) to eliminate g ~ [ < ~ ( z ~ ) z r ]  from this relation yields 

+(%) .:I = -i( din To ) [9Mwy(z ; ) -  q] 
F z=zo c0(zF) dz z=zo dWO 
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Substituting this into equation (44) yields 

2 

Or, dividing both sides by i(d In co/dW0) F,  z=zo 

2i 

Hence, 

is the boundary condition for (or $) on Fo. Thus, the boundary conditions on the 
curves So and Fo are given by equations (43), (48), and (49). The boundary conditions 
for the remaining (solid) boundaries are easily deduced by substituting the first asymp- 
totic expansion (12) into the second group of boundary conditions (11) and equating the 
coefficients of E to the first power. For convenience, we now collect in one place the 
complete set of first-order boundary conditions. 
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PNG[w;(z) - w;(z,l = 0 

z €SO 

94%<;(z) = 0 

q z )  = 0 

z €is 

Z E E  

Z - K  

Z - G  

z E F, 

Transformation of First-Order Problem to Wo-Plane 

Now these boundary conditions completely specify a boundary value problem (or 
more precisely, two boundary value problems connected along the curve So) in the 
zeroth-order region of flow in the physical plane. However, under the change of vari- 
able z - Wo defined by equations (21) and (35), this boundary value problem can be 
transformed into one in the zeroth-order region of flow in the Wo-plane (which is indi- 
cated in fig. 3). The boundary conditions in the Wo-plane a r e  

Re 
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where the boundary conditions (17) have been combined with the boundary conditions (50) 
to  obtain the boundary conditions (53). Naturally, the variables 
on the unit s t r ip  below the rea l  axis, and the variables <; and W i  are defined on the 
upper half-plane. 

The two equations (51) can be combined to give a single jump condition for c l  
across  DC. In order to  s e e  this, notice it follows from figure 3 and the definition of a 
derivative of a holomorphic function that, for Wo E DC. 

and % a r e  defined 

n - 
0 = 2- 9m[W;(Wo) - w;(wo,l 

Hence, using equations (13) shows that 
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Multiplying this result  by i and adding it to  the first equation (51) gives 

It is also necessary to transform the boundary condition (52). To this end notice that for 
wo €62 

Hence, 

Therefore, using the definition of a derivative of a complex variable 

Differentiating by par ts  yields 

Upon using both equations (13) we find 
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Therefor e, 

In view of this equation, let us  define A+ on the unit s t r ip  below the real axis in the 
Wo-plane by 

Clearly, A+ is holomorphic on its domain of definition, and - 
P ~ A + ( w ~ )  = o for w0 E EC (56) 

n 

Now it follows from boundary conditions (17) that co(W0) is real  for Wo E KD. Hence, 
it is readily seen from figure 3 and the definition of a derivative of a hokomorphic func- 
tion that for  Wo E KD 

- 
1 dWo - 1 - ----- 

where we have put 

uo = ReCo 

/1 

This shows that (dWo /dC0) is also real on KD. Hence, it follows from the first bound- 
a r y  condition (53) that for Wo E KD 

- 
27 



Differentiating this result  along HD 

Therefore, in view of the fact that co(W0) is real for Wo E KD, we conclude from def- 
inition (55) that 

gm A+(w,) = o for wo E KD 

A completely analogous argument shows that - 
gm A + ( w ~ )  = o for  wo E K E  

Now define A- on the upper half Wo-plane by 

(57) 

Then A- is holomorphic in the upper half-plane. An argument analogous to that used 
to  deduce condition (57) suffices to show that 
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It follows from the jump condition (54) and figure 3 that, for Wo E 6?, 

Hence, in view of definitions (55) and (59) this shows that the jump condition of A* is 

The right side of this equation can be put into a more convenient form as follows: Notice 
that, for Wo E DC, 

- 
17 f 

Hence, 

and upon collecting equations (56) to  (58) and equation (60) we have 
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[Wo E K E  

Hence, in view of equations (61) to  (63), we have transformed the boundary value prob- 
lem in the Wo-plane for the holomorphic functions S r  (or W 3  into a boundary value 
problem fo r  the holomorphic functions A*. Clearly, once the functions A' a r e  known, 
the original functions (1' can be obtained by simple quadrature f rom definitions (55) and 
(59). However, it is necessary to transform the boundary value problem once more be- 
fore  a solution can be obtained. 

Transformation of Boundary Value Problem for A' into 
T-Plane and Solution of Problem 

Under the change of variable Wo - T defined by equation (21), the boundary value 
problem for A* in the Wo-plane posed by equations (61) to (63) is transformed into the 
following boundary value problem for the holomorphic functions A* in the T-plane 
(shown in fig. 5). 

(64) 
?*A+(( + io) = o 

J+nA-(C + io) = 0 

5 L -1 

5 I -1 

Clearly, the domains of definition of A+ and A- a r e  9; and 96, respectively. 

the upper half T-plane in t e rms  of A* as follows 
It is more convenient to work with the sectionally analytic function 52 defined on 
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T E 9: [52+(T) 3 dT dWo A + (T) 

Since it is clear from equation (19) that dWo/dT is real when T is real, it follows 
from the conditions (64) that 52 must satisfy the following conditions: 

d ( T )  - 52-(T) = r(T) 

j'aa(5 + io) = o 

for T €Yo 

for --oo < 5 < +m 

where we have put 

Now suppose 0 is a sectionally analytic function which satisfies the conditions ( 6 6 ) .  
Then, if w is any function which is holomorphic in the interior of the upper half-plane 
and which is real  on the rea l  axis, the function 0 + w also satisfied the boundary condi- 
tions (66 ) .  First, suppose that w has no singularities on the real axis. Then, the 
Schwartz reflection principle shows that w has an analytic continuation to the entire 
T-plane and therefore has a Taylor se r ies  expansion about the origin which has rea l  co- 
efficients. Thus, w can be represented in the form 

m 
cnTn cn real 

n=O 

If m = +-oo, w has an essential singularity at T = +m; if m is finite, w has a pole of 
order m at T = +-oo. It will be shown subsequently that the behavior of [ at T = -oo 

dictates that m be finite. If w has singularities on the real axis, the requirement that 
w be rea l  there  shows that they cannot be branch points. Hence, these singularities 
must be poles or perhaps essential singularities. However, an investigation of the solu- 
tion shows that, if 5 is to  be bounded, the only singularity which can be allowed is a 
simple pole at the origin. In view of equation (19) the most general solution to the 
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boundary value problem (66) with certain restrictions of boundedness imposed can be 
written as 

m 

n=O 
S2(T) = O(T) + cnT n + a- dWo k ' e T > O  

dT 

where cn and a are real constants and 0 is a sectionally analytic function which 
vanishes at infinity, is bounded on the real axis, and satisfies the boundary value prob- 
lem (66). 

The function 0 can be constructed as follows: An investigation of the behavior of 
r(T) at T = 00 and T = -1 shows that it vanishes at these points like some power of T. 
Hence, the Plemelj formulas (ref. 8) show that the Cauchy integral 

(where the integration is to be performed in a counterclockwise direction along Yo) is a 
sectionally analytic function which is bounded on the real axis, vanishes at infinity, and 
which satisfies the jump condition (66). However, this function is not necessarily real  
for real values of T. But this can be compensated (as shown in ref. 8) by adding the 
function 

r( r) d r  
2 r i  7 -  T 

to  equation (69). (Notice - that, if f is holomorphic in the upper half-plane, the function 
f defined by f (T)  = f(T) is also holomorphic there, and f (4 )  + f(5) = f (5)  + is real). 
Thus, the function 0 with the required properties is defined by 

- 

h order to complete the solution it is necessary to determine the real constants 
c (n = 0, 1, 2, . . .) and a. Before this can be done, however, it is necessary to use  n 
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the preceding results to find [l as a function of T. In view of the mapping T - z de- 
fined by equation (35), which transforms the T-plane into the physical plane, this will 
complete the solution. 

Apropos of these remarks notice that definitions (55) and (65) combined with equa- 
tion (68) show that for T €9; 

Since equations (19) and (20) show that dWo/dCo = 0 at T = -1, integrating both sides 
of this equation yields 

n=O 

Substituting in equations (19) and (20) and rearranging yield 

m 

n=O 
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P Since r ( T )  = O(T ) with some P < 0 for T - 00, it follows from the properties of the 
Cauchy-type integral (ref. 8) that 

O(T) = o(1) for T - 03 
It is easy to  see from equation (22) that C0(T) - 1 as T - 03. Hence, as T - m, 

O(T) dT = o(T) LT - CO(T) 

-T 1 n  d T - T  n+ 1 
C O C O  

and 

Using these results in equation (73) shows that 
m 

Thus, in order that be bounded for T - 00, it is necessary to set  

c n =  0 for n > O  

Equation (73) can now be written as 

(74) 
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Since Co(A) = -1 and since O(A) is bounded, it follows from equation (75) that 

Hence, in order  that C; be bounded at T = A, it is necessary that co and a! satisfy 
the two rea l  equations 

Using equation (27) and the fact that the origin of the coordinate system in the physical 
plane is at D (fig. 2), it follows that 

1 T + l  z(T) = -  - -dT 
a < o m  T 

Hence, it follows from this and definition (29) that equation (76) can be written as 

- 1 O(T) dT + coI1(A) + a!z(A) = 0 
CO(T) 

(77) 

The constant a! appearing in this  equation is directly related t o  a geometric parameter 
of the flow. In order  to see  this,  notice first that the flow in the jet far downstream be- 
comes uniform. Hence, in view of equation (5) (see fig. 2), 
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Therefore, continuity requirements dictate that the dimensionless net volume flow 
through the jet Q be equal to  

h f l +  E 

But Q must also be equal to  the change in the stream function across  the jet. Hence, 
the boundary conditions (11) show that 

0 - QF = Q = h i 1  + 

Expanding both sides of this expression in powers of E by using the expansion (15), the 
last expansion (12), and equation (18) shows that 

1 - c q l + .  F . . = ( l + ~ h l + .  . . ) ( l + - ~ + .  1 . .) 
2 

Upon equating like powers of E, we find that 

Another expression for  I,!J? can be obtained by first obtaining an expression for  the 
first-order complex potential within the jet W i  from equation (71). To this end, notice 
it follows from equations (13) that 

Hence, 
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Substituting this result together with equation (74) into equation (71) yields 

Integrating this expression between -1 and T and recalling that dWo/d In 5, = 0 at 
T = -1 and that the normalization condition (7) implies W:(T) = Wo(T) = 0 at T = -1, 
we find 

dwo [%I - 11 - Wf(T) + -WO(T) 1 = O(T) dT + co(T + 1) + @WO(T) (80) 
d h-l eo [()(TI 2 2 

Using equation (72) together with equation (74) to eliminate <f(T)/CO(T) from this 
equation yields 

It follows from this equation, after using equations (76) and (77), that 

P A  
w ~ ( A )  =(: - a)wo(a) -1 O(T) dT - cO(A + 1) 

-1  

Since O(T) is real for real values of T (see fig. 5,  p. 13) and since PmW,(A) = -1,  
equation (82) shows that 

g+nW;(A) = @ - - 1 
2 

An examination of figures 2 ,  5 ,  and 6 (pp. 5 ,  13, and 17) together with equation (47) 
easily shows that 
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Hence, 

Finally, combining this with equation (79) shows that 

We now return to the problem of solving equation (78) for a! and co, or ,  in view of 
equation (83), for hl and co. Substituting equations (23), (33), (34), (36), and (83) 
into equation (78) shows that 

r 1 

+ 4i.rrAco - 2ih1(2A - 1) = 0 (84) 

Now 

In view of the singularity in the denominator, the second integral must first be carried 
out over the path shown in figure 7, and then the limit 6 - 0 can be taken. After per-  
forming these operations, we find that 

where the notation P. V. indicates that the Cauchy principal value of the singular integral 
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E D 
-1 0 A 

- - 
Figure 7. - Path of integration for LA (a - iTm) @(T)dT 

in T-plane. 

is to be taken. Substituting these relations into equation (84), recalling that O(T) is 
real  for real values of T, and taking the real  and imaginary par ts  of the resulting ex- 
pression yield 

1 + 2 6  V T A  

and 

27rAc0 - h1(2A - 1) + 27rAO(O) = 0 

Upon eliminating co between these two equations, we find 

A 

hl = 
( A +  1 ) ( 4 ~ +  1 + 4 6 d 1 )  5 

(85) 
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and 

Since equation (35) se ts  up a one-to-one correspondence between points of the physical 
plane and points of the T-plane, it is clear that equations (71) and (81) (with the use of 
definitions (67) and (70)) allow u s  to  compute the first-order perturbation to  the velocity 
and stream function at each point of the physical plane within the jet. Similar results 
are obtained by exactly the same procedure for  the flow quantities in the main stream, 
but we shall not list the equations here.  However, an inspection of these equations does 
show that the choice of the constants cn and a made above is sufficient t o  guarantee 
that 5 -  is bounded. 

In view of the fact that once the shape of the jet is known it is quite easy t o  sketch 
in  the streamline patterns, the most important quantities to  be obtained from the analysis 
are the shapes of the curves S and F in the physical plane (see fig. 2, p. 5). vow- 
ever,  since the viscous spreading of the jet is controlled by the pressure (or equivalently 
the velocity) distribution along the slip line S, that quantity is also of some importance. 
Hence, explicit formulas will now be obtained for these quantities by using the formulas 
derived above. 

D e r ivat io n of Bo u nda ry Va I u es 

In view of the one-to-one nature of the mapping involved, it is clear that, if  
.?mW+(z) = qF, z must be a point on the stream line which passes  through the point E 
in figure 2 .  In addition, since the velocity potential is increasing in the direction E- C 
along F, it is clear that, i f  /?eW+(z) > ReW+(a + ib) (where a + ib  are of course the 
coordinates of the point E), z must be a point of the free-stream line F. Hence, to 
within an e r r o r  of order  c2, the point z will be on the free-stream line F (i. e . ,  it 
wil l  be on the first-order position of F) if  

F F F hZW+(Z) = qo + E q l  = -1 + E q l  

and if 

keW+(z) > keWo(a + ib) + c/?eWi(a + ib) 

where equation (18) has been used. It is also clear that &Wo(zr) > /?eWo(a + ib) for 
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F any point zo E Fo. In view of these considerations, it follows from equations (79), (82), 
and (83) and the fact that 9~ Wo(zf) = -1  that the point zF = 20" + €2: will be on the 
first-order position of F if zF satisfies the equation 

LA O(T) dT - cco(A + 1) (87) 

F + F  It is clear from this equation that, when zo = a + ib, W (z ) = W+(a + ib) and that 

R e W  (z ) - ob as zo - 00. Hence, the point zF t raverses  the stream Line F (to 
within t e r m s  of order  E ) as z t  t raverses  the z'eroth-order free-stream line Fo. 

+ F  F 

2 

S Analogous considerations show that the point zs = zo + E Z ~ ,  which is determined by 
the equation 

S t raverses  the first-order sl ip line S as the point zo t raverses  the zeroth-order slip 
line So. 

the first-order distances z 

free-stream line and from the zeroth-order slip line to the sl ip line, respectively, a r e  
found to be 

By substituting equations (87) and (88) into the expansions (40) and (38), respectively, 
F s and z1 from the zeroth-order free-stream line to the 

and 

+ I)~W~(T;] F T E yo 

where the fact has  been used that the curves So and Fo in the physical plane a r e  the 
conformal images under the mapping T - z defined by equation (35) of the curve % 
and the line EC, respectively, in  the T-plane. The expansions (12) show that 

z F  = z(T) + c z y  T E 6? (9 1) 
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zs = z(T) + EZ; T E .Yo (92) 

In addition, equation (41) shows that the magnitude of the velocity at each point z S 
of the sl ip line is given to within t e rms  of order  e2 by 

Upon substituting equations (89) and (90) into equations (91) and (92), respectively, and 
substituting equation (81) into the resulting expressions, we find, after using equa- 
tion (79), that 

2 [O+(T) +co]dT - 
T T 

z S =z(T)( l  + Ehl) - E [l 
50 (TI 

(94) 

zF  = z(A) + [z(T) - z(A)] (1 + Ehl) 

where equation (77) was also used in obtaining equation (95), d ( T )  denotes the limiting 
value of O(T) as T approaches Yo from within 9$, and the line integrals in equa- 
tion (94) a r e  to be taken along Yo 

It follows f rom the first equation (13) and equation (90) that 
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Upon substituting equation (80) into this expression, we find that 

Substituting this into equation (93) shows that 

where the line integral is along Yo. 
The distance measured along the curve S is given by 

S c. = Ho ITlg1 IdT( T €yo 

-1 
(9 7) 

where the integral is taken along the curve Yo. 
we find after using the first equation (13) that 

Now, upon differentiating equation (94), 

Hence, 

+ 2chl - 2 d e  In ‘O LT [O+(T) + co]dT >’” T €Yo 
dwO 

2 Substituting equation (96) into equation (79) gives, to  within t e rms  of order  E , 

Substituting this into equation (97) shows that 
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All the necessary results have now been obtained. However, it is convenient t o  
rewrite some of these in  more explicit form. This is done in appendix B. For con- 
venience, the most important equations of this section are now summarized. 

Su mma ry of Equations 

Coordinates of downstream edge of nozzle: 

b = 2(2A - 1) J 

Z eroth-order velocity: 

Transformation from T-plane to physical plane: 

z(T) + a + ib + - A)(l - ?-) + Z i f i ( z  -$)fG - b In 
a 

Change in stream function across  jet: 

Asymptotic jet width: 

44 
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where 

Inter mediate variables: 

- (T + 1 ) d T  - A /?e 

/rn 

1 1 __ 
!O(T) (T + 1)dT  - A 

where 

M(q) E - (77 - cos q sin q) + i 
2 s in  77 



Position of slip line: 

Velocity along slip line: 
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Distance along slip line: 

Position of free-stream line: 

zF = a + ib + [ z ( t ; )  - (a + ib)] (1 + Ehl) 

Y 

Equations (19) and (20) have been combined with equation (B1 

A 1 4  < co ; I  

to obtain equation (99). 

RESULTS AND DISCUSSION 

The numerical calculations were performed by using complex arithmetic. Hence, 
there  is no need to separate the rea l  and imaginary parts of the various formulas given 
in the preceding section. 
B/A = b/a for various values of the parameter A. 
correspondence between the values of B/A and the values of A. In view of this fact, it 
is more convenient to present the results in te rms  of the orifice orientation angle de- 
fined as tan-' B/A since there  is a one-to-one correspondence between this latter 
quantity and the parameter A. A plot of the orifice angle against the parameter A is 
presented in figure 8. The orifice angle completely fixes the geometry of the problem. 
Hence, once the geometry of the orifice is set, the parameter A can be determined 
from figure 8. This parameter is the one which appears naturally in the formulas which 
are used to calculate the various physical quantities of interest. The only other param- 
eter appearing in the problem is E, which gives a measure of the difference between the 
total pressure in the jet and the total pressure in the main stream. This parameter is 
defined by equation (1) as 

Equations (34) a r e  used to calculate the orifice offset ratio 
However, there  is not a one-to-one 
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Figure 8. - Orif ice angle in z-plane as funct ion of T-plane parameter A, 

1 2  
2 
- PV, 

Equations (23) and (113) are used to calculate r(q) for various values of A, and 
these values of r(q) a r e  used together with equation (114) to calculate O+(q) and a(<) 
for  various values of A from equations (102) and (103), respectively. All the physical 
quantities presented in the plots are determined by these functions. Substituting the 
values of O(<) into equation (85) allows the quantity hl to  be found as a function of the 
parameter A. Combining this with equation (15) gives h = H/Ho as a function of A 
and E. Now for two-dimensional jets, the jet contraction ratio is defined as the asymp- 
totic jet thickness divided by the length of the orifice. Hence, the jet contraction rat io  
is 

Substituting equations 
function of A and E 

resul ts  are presented 

(15) and (34) into this formula gives the jet contraction ratio as a 
or, in view of figure 8, as a function of tan-’ B/A and E. These 
in figure 9. It can be seen from figure 9 that, for positive values 
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Figure 9. - Jet contraction ratio. 

of the orifice angle, small  changes in E result  in large changes in the contraction ratio, 
the effect becoming more marked as the orifice angle is increased. The opposite con- 
clusion holds for negative values of the orifice angle. Figure 9 also shows that, for a 
given orifice angle, increasing E always results in an increase in the jet contraction 
ratio. This increase is negligible, however, for orifice angles less  than -100'. Fig- 
u r e  9 shows that the jet contraction ratio is a maximum for an orifice angle of approxi- 
mately -80' and falls off markedly when the orifice angle is changed. 

The parametric equations (with parameter 77) for the slip line are obtained by su.b- 
stituting equations (86), (35), (114), and (23) into equation (105) and using definitions 
(104) and the expression for O+(v) discussed above. The parametric equations (with 
parameter 5 )  of the free-stream line are obtained by substituting equations (23), (35), 
and (86) together with the values of O(5) discussed above into equation (112). The re -  
sulting expressions (for the sl ip line and for the free-stream line) determine the bound- 
a r y  of the jet. The shapes of the jet boundaries for various values of the parameters E 

and B/A are shown in figures 10 to 19. A number of these figures consist of two parts. 
When this occurs, part  (a) of the figure is for the case when the total pressure in the jet 
exceeds that in the main s t ream ( E  1 0) and part  (b) is for the case when the total pres- 
su re  in the main s t ream exceeds that in the jet ( E  I 0). Figure 10 corresponds to a jet 
injected normal to the main s t ream (B = 0). Figures 11 to 15 a r e  for negative orifice 
angles (i. e., jet injected downstream), and figures 16 to 19 are for positive orifice 
angles (i. e., jet injected upstream). Figures 10 and 16 show that, when the orifice 

49 



I 

I 

1 

1 

.--. 2 1  
t 
a- 
c m f ._ 
% c  
0 " 

Free-stream velocity, 
V, - 

(a) Total pressure in jet exceeds that in  main  stream, E 2 0. 

Free-stream velocity, e@@ 
_ / @  4 c vw 

I 
7 

Dimensionless coordinate, X/HO 

(b) Total pressure in main  stream exceeds that in  jet, E 50. 

Figure 10. - Jet contour for  or i f ice offset ratio, BIA = 0. Jet injected normal to main  stream. 

50 



Free-stream velocity. V, 
c 

0 
1 
> - 
w m - 
._ 
D 
B 
m * 
L: 
0 m 

- 
.- 

._ E 
CI 

-1- 

-2 

-2 

1- _____----- 

0- 

1- P - P, 

; P V L  

-. 3 

1 

0 ______ 
. 3  I ! I I I I I 2  

1 -1 0 2 3 4 5 6 7 
Dimensioniers coordinate. X/HO 

Figure 11. - Jet contour lor  orifice offset ratio, B/A = 2. Jet injected downstream. Total pressure in  jet exceeds that in  main stream, E >_ 0. 

I Free-stream velocity, V, 
-- 

I 

rree-stream velocity. V, - 1.5- 

1.0- ___--.-- 

r" 
2. .5- - 

E 

< =  !g 
7 PV, 

-. 2 __ - 

I -u 
-LO -.5 0 . 5  LO 1.5 20 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

Dimensionless coordinate. X/HO 

Figure 13. - Jet contour for orifice Offset ratio, BIA = -2 Jet injected downstream. 
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Figure 16. - Jet con tour  for or i f ice offset ratio, BIA = 0.5. Jet injected upstream. 

F igure  17. - Jet contour  for or i f ice offset ratio, BIA = 1. Jet injected upstream. Total pressure change w i t h i n  
jet, G = 0. 
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angle is greater than or equal to  zero, a small  change in the total pressure within the 
jet resul ts  in a large change in both the jet penetration and jet thickness. This effect 
becomes more pronounced as the orifice angle is increased. In fact, it becomes s o  pro- 
nounced that it is felt that the analysis may be invalid for orifice angles larger than 45'. 
For this reason, only the curves for E = O are given for these orifice angles. On the 
other hand, figures 11 to 15 show that, for sufficiently large negative values of the ori- 
fice angle, changes of the total pressure within the jet have almost no effect on the jet 
penetration or on the jet thickness, Although the scale of the figures is too small to  
show this, the numerical resul ts  do show that the jet always leaves the wall in a tan- 
gential direction. 
markedly decrease the contraction ratio, which is indicative of a decrease in the flow in 
the jet. The indications are, however, that a slight increase in the total pressure in the 
jet can easily compensate for this decreased flow. 
increasing orifice angle. 

along the slip line in parametric form from equations (108) and (111) after using defini- 
tions (1O4), (106), and (107) and substituting in equations (114), (23), (79), and (86). 
The results of these calculations are shown in figures 20 to 27. Each figure is drawn 
for a different orifice angle. 
calculating the viscous boundary layer along the slip line. The figures show that the ve- 
locity within the jet at the upstream edge of the orifice decreases with both increasing 
orifice angle and decreasing E .  It can also be seen from these curves that the pressure 
coefficient nearly reaches its asymptotic value in a distance of P O  jet diameters. 

Figure 9 shows that turning the jet into the main s t ream tends to  

The jet penetration increases with 

The pressure coefficient on the sl ip line is obtained as a function of the distance 

These curves contain all the information necessary for 
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Figure 20. - Pressure coefficient o n  slip l i n e  of jet for ori f ice offset ratio, B/A = 0. 
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Figure 22. - Pressure coeff icient o n  s l ip l i n e  of jet fo r  o r i f i ce  offset ratio, 
BIA = -6 ( f o u r t h  quadrant). 
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Figure 23. - Pressure coefficient o n  s l ip l i n e  of jet for o r i f i ce  offset ratio. 
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Figure 24 - P r e s s u r e  coeff ic ient  o n  s l ip  l i n e  of jet fo r  o r i f i ce  offset ratio, 
BIA = -1 ( f o u r t h  quadrant). 
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F igu re  25. - P r e s s u r e  coeff ic ient  o n  s l ip l i n e  of jet for  o r i f i ce  offset ratio, 
BIA = -0. 1862 ( f o u r t h  quadrant). 
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Figure 26. - P r e s s u r e  coeff ic ient  o n  s l ip  l i n e  of jet fo r  o r i f i c e  offset ratio, BIA = 0.5 ( f i r s t  
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Figure 27. - Pressure coefficient on  s l ip l i n e  of jet for o r i f i ce  offset ratio, BIA = 1 ( f i r s t  
quadrant). Total pressure change w i t h i n  jet, E = 0. 

CONCLUDING REMARKS 

A procedure has been developed to obtain a solution to the problem of a two- 
dimensional jet injected from an orifice at an oblique angle to a moving s t ream for the 
case where the total pressure in the jet does not differ too much from the total pressure 
in the main stream. The analysis shows that, for orifices tilted into the main stream, 
small  increases in the total pressure in the jet result  in large increases in the jet pene- 
tration and in the jet thickness. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 24, 1969, 
129-01-07-0'7-22. 
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APPENDIX A 

FLUIDS OF UNEQUAL DENSITY 

A situation often encountered is the flow of a jet of high-density fluid into a low- 
density stream. 
foregoing analysis may be applied after a simple rescaling. This fact will now be proved. 

When the jet and main s t ream are not composed of the same fluid, the 

Previously, the problem was formulated in t e r m s  of the dimensionless velocity 

and its complex potential 

In order to consider fluids of unequal density let t,' be redefined as 

pz) = U --c - i V  z E l3- 

where p.  is the density of the fluid in the jet and pm is the density in the stream. To 
preserve the relation 

J 

dW 1: = -  
dz 

it is also necessary to redefine the potential W as 
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z E D -  

The dimensionless coordinates are, as before, 

Y y = -  
HO 

The perturbation parameter E is defined more generally as 

which shows that the jump condition on the slip line has the same form as for fluids of 
equal density. 

Likewise, the value of the dimensionless velocity on the free-stream line is given 
again by 
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Very far from the orifice, the dimensionloss velocity takes the same limits as in 
the equal density case, namely, 

f (z )  - 0 z - K (9) 

Similarly, the homogeneous conditions on the velocity components at the solid boundaries 
remain unaltered: 

-94% <+(Z) = 0 z E G 

9#2 <+(Z) = 0 z E iz 
52% r ( Z )  = 0 z E 6s 

Lastly, the boundary values of the s t ream function a r e  again given by 

9&W(Z) = 9mw-(z)  = 0 z E s 

?&W+(Z) = I) z € F  

The value of QF is to be determined in the course of the analysis exactly as before. 

tion a r e  identical to those obtained when the densities a r e  equal (eq. (11)). Since the 
differential equation for the flow (Laplace's equation) remains unaltered as well, the 
analysis proceeds exactly as before, with the same solutions for the zeroth- and first- 
order problems. 

of the density ratio. The pressure ratio (eq. (10)) is now 

Thus, it is seen that the boundary conditions on the velocities and the s t ream func- 

The interpretation of the resul ts  must be modified in one instance through inclusion 
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Equation (A3) shows that the pressure coefficient given in figures 20 to 27 must be re- 
interpreted as the ratio of the dynamic pressures  when the fluid densities are unequal. 

Another quantity of interest is the mass flow in the jet 

where C.R. is the contraction ratio computed to first order  (fig. 9). 



APPENDIX B 

EXPLICIT FORMULAS FOR CALCULATING BOUNDARY VALUES 

Carrying out the differentiation by parts in equation (67) yields 

It follows from the definition of a derivative of a holomorphic function that this can 
be written as 

Applying the Plemelj formulas (ref. 8) to equation ('70), we see that 

where the integration is to be performed in a counterclockwise direction along Yo. 
view of equation (24), however, this can be written as 

In 
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where, for brevity, we have written O+(r]) in place of O+[(-g/sin r ] )  e-ir]], r(q) in 
place of r[-(r]/sin r ] )  e-i~], etc. Since 

033) 
2 s in  y 

equation (B2) can be written as 

r(.)[+ (7 - cos y sin y )  + i dy 

y cot y - r] cot r ]  - i(y - r ] )  

1 7r 

~~ 

P. v. sin y o + ( ~ )  = 1 qr]) + - 
2 27ri 

rr 
(y - c o s y  sin y )  - 3. 

0 517 < 7 r  (B4) 1 
2-rri 

- -  
y cot y - r] cot r ]  + i(y + r ] )  

For T = 5 + io, equation (70) becomes 

1 
2ni 

O(5) = -  

0 

Y 
sin y 

e - ~ )  1 
- - 
27ri + 5  

and in view of equation (B3) this can be written as 
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s 0 

a 

y cot y + 5 - iy 

S S Upon defining zo(q) and co(v) by 

7 

sin q 

- m < [  <+-  

and using equation (B3), equation (94) becomes 

zs = zo(v)(l S + Ehl) 

where p is defined by equation (26), it follows from equations (19), (20), (24), (25), 
and (B6) that equation (96) can be written as 
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Let po be the pressure  far inside the orifice (the point K in fig. 2). Since the velocity 
is zero there, it is clear that p, = P 
pressure at the point xs, y, on the slip line p(xs, y,) is given by 

Hence, it follows from equation (2) that the 
j. 

Po - P(XS, YJ 
1 2  
2 
- PVm 

2 v, 

Hence, let the pressure coefficient on the slip line C be defined by 
PS 

It, is clear from equation (19) that 

Hence, it follows from equation (24) that 

for T € Y o  )L/z 2 

Eyuatbns (24) and (101) show that for T E Yo 

66 



ldTl = 

Hence, for T E .Yo 

c o t q - A - i  
2 sin q 

cot q - 1)2 + q2]dq 

Using this result  in equation (98) together with definition (B8), 

Finally, it follows from equations (95) and (33) and figure 5 that 

z F  = a + ib + [ z (e )  - (a + ib)] (1 + chl) 
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APPENDIX C 

SYMBOLS 

horizontal distance between edges 
of orifice 

A/l 

vertical distance between edges 
of or  if ice 

B/l 

pressure coefficient along slip line 

n = 0, 1, 2, . . . constants 

flow regions in physical plane 

regions in T-plane 

free streamline in physical plane 

asymptotic jet width 

H/Z 

function defined by eq. (29) 

function defined by eq. (107) 

characteristic length (set equal 

to q)) 
function defined by eq. (114) 

order symbol 

order symbol 

total pressure in jet 

total pressure in main s t ream 

Cauchy principal value 

static pressure 

static pressure at jet source 

static pressure far upstream 
from jet 

Q 

S 

S 
A 

T 

U 

U 

V 

v i  
vco 
V 

W 

X 

X 

Y 

Y 

Z 

S 
Z 

F 
Z 

a! 

r 
Y 

dimensionless volume flow through . 
jet 

sl ip line in physical plane 

distance along slip line 

s l ip  line in T-plane 

intermediate variable, 5 + iq 

X-component of velocity 

u/v, 
Y -component of velocity 

velocity along slip line inside of jet 

free-str eam velocity 

v/v, 
dimensionless complex potential, 

q + iQ 

coordinate in physical plane 

X/L 

Y / I  

coordinate in physical plane 

dimensionless complex physical 
coordinate, x + iy 

dimensionless coordinate of points 
on slip line 

dimensionless coordinate of points 
on free-stream line 

constant 

function defined by eq. (67) 

dummy variable to replace q 



A 

E 

5 

rl 

0 

*O 
A* 

cp 

location of edge of orifice in 
T-plane 

1 2  
(Pj - P,)/g PV, 

dimensionless complex conjugate 
velocity, u - iv 

coordinate in T-p1.ane 

function defined by eq. (70) 

arg. 50 

defined by eqs. (55) and (59) 

function defined by eq. (26) 

coordinate in T-plane 

density 

dummy variable in T-plane 

velocity potential 

W V ,  

\k s t ream function 

$ W l V ,  

qF value of dimensionless s t ream 
function on free-stream line 

52 function defined by eq. (65) 

Subscripts: 

0 zeroth-order quantity 

1 first-order quantity 

Superscripts: 

F value of quantity on free-stream 
line 

s 
+ 

value of quantity on slip line 

value of quantity inside jet and 
orifice 

- value of quantity in main s t ream 

complex conjugate (over bar) 
- 
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